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Correlation dimension of intermittent signals

Rainer Hegger, Holger Kantz, and Eckehard Olbrich
Max-Planck-Institut fu¨r Physik komplexer Systeme, Bayreuther Strasse 40, 01187 Dresden, Germany

~Received 5 March 1997!

We investigate the breaking of proper self-similarity of attractors in the presence of intermittency. We show
that this can lead to dramatically too small values of the numerically estimated correlation dimensionD2,
which we relate, in the case of type I intermittency, to universal scaling properties in the vicinity of the critical
value of the control parameter. For spatially extended systems we study the influences of space-time intermit-
tency on the correlation dimension.@S1063-651X~97!01307-X#
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The estimation of invariant quantities like dimensions, e
tropies, or Lyapunov exponents has become quite a ubi
tous task in the analysis of chaotic time series. It is imp
sible to numerically perform the limits given in th
mathematical definition of these quantities, since the att
tors formed by time series are usually represented by a fi
number of points and experimental observables are addit
ally corrupted by noise. In the case of ‘‘well behaving’’ lo
dimensional systems this is not a severe problem at all. Th
one can estimate, e.g., the correlation dimension even
relatively large length scales with good accuracy. By ‘‘w
behaving’’ we mean that the structure of the attractor is m
or less independent of the length scales we look at~or in
other words, the self-similarity is visible on large scales,
ready!. But this may not always be the case. The proper
might differ quite strongly with respect to the length scal
A trivial example of this length scale dependency is a de
ministic system, which is corrupted by noise. In this case
true dimension is infinity, but on large scales one might
~if the noise is not too large! the dimension of the noise fre
attractor.

Another example is the one we want to investigate in t
paper in more detail. The system we are looking at is s
posed to show intermittent behavior. That means, the t
evolution of the system looks periodic for a certain time, b
occasionally shows chaotic bursts.

One possible mechanism for this behavior~the so called
type I intermittency@1#! is illustrated in Fig. 1. There we
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show the graph of the third iterate of the logistic m
@ f (x)512ax2# for a51.7425 ~left plot!. For a5ac57/4
the map undergoes a bifurcation from chaotic behav
a,ac to a stable period 3 orbita.ac . Thus, for the param-
eter value ofa shown in the figure, the map is chaotic. B
one can see that close to the values ofx where the fixed
points arise fora5ac the map is already near they5x line.
That means that once the trajectory off + f + f comes close to
these points, it stays there for a certain time~right plot in Fig.
1!, and a time series off looks roughly periodic. It is known
that the average lengtĥl & of the almost periodic segment
scales like

^ l &;~a2ac!
1/2 ~1!

for type I intermittency@2,3#. As we will see in the follow-
ing, this behavior has dramatic consequences for the co
lation integral.

As another example for a low dimensional system,
treat the Lorenz system@4#. It has a periodic solution for the
parameter valuesb58/3, s510, andr'166 @2#. For these
parameters we will see a one dimensional, nonchaotic li
cycle. Increasingr a bit will lead to intermittent behavior@1#.
A delay plot of thex coordinate forr5166.07 is shown in
Fig. 2. Most of the points are close to the periodic orb
whereas the remainder of the attractor is poorly sampled
the short chaotic bursts.
FIG. 1. Third iterate of the logistic map with a parametera close to the bifurcation to the period 3 orbit~left panel! and the resulting time
series~right panel!.
199 © 1997 The American Physical Society
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Figure 3 shows the results for the correlation dimens
estimate of these data. On large length scales the dimen
of the system is close to 1. Only on much smaller len
scales do we find the crossover to the correct dimens
(.2).

This behavior can be explained by studying the proper
of the correlation dimension. The correlation integral is d
fined by @5#

C2~e,m!5
1

N~N21!(c51

N

(
nÞc

Q~e2ixW c2xWni !, ~2!

wherem is the embedding dimension,e the length scale, and
N the number of vectorsxW i5(xi ,xi21 , . . . ,xi2m11). Now
we can divide the first sum on the right-hand side into t
parts: one containing the centers inside the laminar ph
the other one containing centers inside the chaotic bu
This gives

C2~e,m!5pinC2
in~e,m!1poutC2

out~e,m!, ~3!

with pin(out)5Nin(out) /N being the fraction of centers lying in
the laminar and the chaotic phase, respectively. From
correlation integral one gets the correlation dimension by

D2~e,m!5
] lnC2~e,m!

] lne
. ~4!

FIG. 2. Delay plot of thex coordinate of the Lorenz system wit
strong intermittency. The parameters were:b58/3, s510,
r5166.07.

FIG. 3. Results for the estimate of the correlation dimension
the data shown in Fig. 2. The length of the time series was 106.
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Using Eq.~3! one easily gets

D2~e,m!5p8 inD2
in~e,m!1p8outD2

out~e,m!, ~5!

with

p8 in~out!5

(
in~out!

(
n

Q~e2ixW in~out!2xWni !

(
c

(
n

Q~e2ixW c2xWni !

,

which is the fraction of pairs found in the laminar phase a
the chaotic bursts, respectively.

On large length scales the ‘‘partial’’ dimensio
D2
in(e,m) is close to 1, whileD2

out(e,m) is close to 2.~Of
course, on length scales comparable to the attractor size
correlation integral is mainly dominated by folding effec
andD2(e,m) may be much larger than 2.! Furthermore, most
of the points~see Fig. 2! are located in the laminar phas
which means thatp8 in is large. This explains the behavior o
the correlation dimension on large length scalese. If we
decreasee the ‘‘fine structure’’ of the laminar phase is re
solved. That means, it becomes visible that it is not a lim
cycle, but only close to one andD2

in(e,m) increases, so tha
we eventually see the global dimension of the attractor.

What can we say about the behavior ofD2(e) for values
of e where the laminar parts still look like a periodic sol
tion? Let ^ l & be the average length of the laminar parts a
^t& the average length of the chaotic bursts. Then, the pr
ability of a point lying in the laminar phase is given by

pin5
^ l &

^ l &1^t&
. ~6!

From Eq.~1! we know that̂ l & scales like 1/Aac2a. On the
other hand,^t& does not depend onac2a ~at least not
strongly!, since it is determined by the global properties
the map, which do not change~strongly! under small
changes ofa. Thus, for small variations ofa, we can expect
^t& being a constant. With this we can conclude that the la
scale dimension behaves like

FIG. 4. Shown are the dimension estimates of the logistic m
for three values ofa (a51.7499,1.749 99,1.749 999 from above
below! close toac . The embedding dimension was set tom55 for
all a.
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FIG. 5. Estimated large scale dimension as a function ofac2a. The left plot shows the scaling ofD2. The right plot shows the behavio
of D2 / f (ac2a), where f is f 15Aac2a and f 25Aac2aC(a), respectively.
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D2~e,m!5
^ l &

^ l &1^t&
D2
in~e,m!1

^t&

^ l &1^t&
D2
out~e,m!. ~7!

~For the dimension we have to usep8 in instead ofpin . But
the scaling law is the same for both quantities, if the nei
borhoods of the points in the laminar and the chaotic part
the phase space do not overlap too strongly.!

We want to check the scaling behavior Eq.~7! on the
logistic map f (x)512ax2. There we find the intermitten
behavior close toac57/4 @3#, where the period 3 window
occurs. For the case of the logistic map we ha
D2
in(e,m)50 andD2

out(e,m)51, and Eq.~7! reduces to

D2~e,m!'Aac2aC~a!, ~8!

where

C~a!5
1

11^t&/^ l &
5

1

11 constAac2a

gives the corrections to the square-root behavior and
easily be calculated from Eq.~7!.

Figure 4 shows the estimate of the dimensions on la
length scales for different values ofa. The closera is to
ac , the smaller is the minimum of the estimated dimensi

In Fig. 5 ~left plot! we show the estimated dimension o

FIG. 6. eu as a function ofa2ac for two different values oft
@t50.5 ~upper curve! and t50.7 ~lower curve!#. Additionally the
square roots are plotted.
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large scales as a function ofac2a. The plot shows that the
dimensions scale pretty well like the expected square r
The right plot showsD2(e,m)/ f (ac2a), with f being
f 15Aac2a and f 25Aac2aC(a), respectively, which is
more sensitive to using the correct scaling law, and we
that Eq.~8! describes the results correctly. The constant
C was fitted to be 7.

Also for the length scales, where the crossover of
correlation dimension takes place, a scaling law should h
We can define a characteristic length scale of the lam
phases. The average ‘‘time’’ the laminar phases last is gi
by ^ l & and the velocity with which the trajectory ‘‘travels’
through the laminar part is in first approximation propo
tional toa2ac . This defines a length scale

ec}~a2ac!^ l &}Aa2ac. ~9!

It is very difficult to get thisec directly from data of the
dimension estimate. Instead, we show in Fig. 6 the value
a length scaleeu , which is defined as the length scale, whe
the correlation dimension crosses a given thresholdu. In Fig.
6 we showeu as a function ofa2ac for two different values
of u, namely,u50.5 andu50.7, and one can see that th
scaling law~9! holds pretty well.

In spatially extended systems one often observes ano
kind of intermittency, which is called space-time interm
tency @6,7#. Space-time intermittency means that we ha
intermittent behavior in time as well as in space. This lea
to a very complex and inhomogeneous structure of the s
tem.

As for low dimensional systems we must expect that
estimates of the correlation dimension of this kind of inte
mittent systems might show similar ‘‘misleading’’ results,
they do for low dimensional systems.

As an example of a spatially extended system, we stud
coupled map lattice~CML!. This is a system ofN maps
spatially arranged as a linear chain~in the one dimensiona
case!, which are usually coupled by a nearest neighb
mechanism

xi
t115~122s! f ~xi

t!1s@ f ~xi11
t !1 f ~xi21

t !#, ~10!

where i51, . . . ,N is the spatial index of the maps,t the
~discrete! time, and f a chaotic map. Heref is the logistic
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map f (x)512ax2 in the regime of fully developed chao
(a52). sP@0,1/2# is the coupling constant. Compared
the more physical partial differential equations, the adv
tage of this system is that it is discrete in space and time
thus very easy to iterate. Additionally, the Jacobian of t
system is easy to calculate and one can estimate
Lyapunov exponents to whatever precision~in a numerical
sense! one wants. Using the Pesin identity and the Kapla
Yorke formula one easily obtains the entropy and the dim
sion of the system, so that we can check the results from
dimension estimate based on the time series analysis dir
with the results obtained by the Lyapunov exponents.
course, the time series analysis is not able to yield the
dimension of the system. The reason is that for a typ
system sizeN5100 and a coupling constants51/3 ~which
is sometimes called the democratic coupling! the Kaplan-
Yorke formula yields a dimension ofD'55. Even if we
assume that the system is multifractal, so that the correla
dimension is smaller than the information dimension, it
impossible to reach such values using the time series ana
@8,9#.

Figure 7 shows a typical plot of the correlation dimensi
estimate based on a scalar time series$xi

t% t51, . . . ,T for the
above mentioned parameters. For our treatments the inte
ing part of the plot is the breakdown of the estimate
e<0.2. This breakdown shows a signature similar to the
observed in the dimension estimate for systems with str
linear correlations@10#. We will see that the effects shown i
Fig. 7 are of completely different origin.

The behavior in our system is determined by a kind
space-time intermittency. If one observes the time evolut
of the system one sees that the spatial degrees of free
behave most of the time irregularly. But occasionally, t
irregularity is replaced by laminar windows occurring tem
porarily in parts of the system. To study the structure
these laminar parts we reduced the system size. If the sy
size is small enough, the whole system eventually ‘‘relaxe
to the laminar solution and one can investigate its proper
in detail. For our special parameter (s51/3) this is very
difficult. Depending on the system size the laminar parts
periodic in time with either period 2 or period 4 or eve
quasiperiodic. Also the spatial structure of the~quasi-! peri-
odic solutions is ambiguous. We found period 7 in space,

FIG. 7. Dimension estimate of a system of 100 coupled Ul
maps based on a scalar time series. The coupling constant was
s51/3. The embedding dimensions range fromm51 tom515.
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also a structure which shows no clear periodicity. This co
plicated behavior also appears in the large system. Dep
ing on the size of the laminar phases in the large system,
can find any of the mentioned solutions. Thus one can
relate the properties of the correlation dimension to a sin
periodic solution. To study its behavior in more detail, let
treat another value ofs, namely,s50.16. For this coupling
the breakdown is even more pronounced~see Fig. 8!.

For this value ofs there exists a unique periodic solutio
@11#, which has period 2 in time and period 4 in space w
the spatial structure: . . .xxyyxxyy. . . , wherex andy are

y~x!5
1

4~122s!S 16F92
4~12s!2

~122s!2G
1/2D . ~11!

Linear stability analysis shows, that this solution is stable
the intervalsP@0.14:0.19# for all N54n with nPN and
periodic boundary conditions. Thus, the chaotic behavior
observe in this case is only transient and represents a ch
repeller.

Independent ofN, parts of the system are temporarily
the laminar~periodic! phase. Of course, these periodic su
systems are disturbed by the rest of the systems and, th
fore, have finite life times only. This is one mechanism f
space-time intermittency and we can expect some beha
for the correlation integral similar to what we found for th
low dimensional intermittent systems.

The difference in the dimension estimate of a low dime
sional and of the above system is the following: For lo
dimensional systems, we saw the laminar behavior on la
length scales, while for the CML the laminar part appears
small length scales. This is due to the frequency the perio
parts appear. They are relatively seldom, which means
pout8 @pin8 , so that the coarse grained invariant measure of
system on large scales is dominated by the chaotic parts
the correlation dimension is roughly identical toD2

out(e,m).
The singularities@and thusD2

in(e,m)# only appear if we re-
duce the length scale further and further. From Fig. 8 we
that the higher the embedding dimension, the more abrup
the breakdown. The reason for this behavior is that due to
high dimensionality of the attractor, all center points in t
chaotic parts lose their neighbors on large length scales
that finally the only pairs contributing to the correlation su
stem from the laminar phase. This holds for arbitrarily hi

t to

FIG. 8. Similar to Fig. 7, but fors50.16 andm51, . . .,10.
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56 203CORRELATION DIMENSION OF INTERMITTENT SIGNALS
embedding dimension, since the temporal length of the la
nar phaseŝl & is not bounded. Of course, this loss of neig
bors is faster the higher the embedding dimension is~at least
as long as the embedding dimension is smaller the attrac
dimension, which is the case here!.

To further illustrate that the breakdown is indeed cau
by the laminar parts we checked it directly in the followin
way: When computing the correlation integral we exclud
all points as center points which lay in the laminar par
That is, we only computedD2

out(e,m). The result is shown in
Fig. 9. There one clearly sees that the breakdown doe
longer appear and that the dimension grows more or
linearly with ln(e).

We showed that the existence of laminar parts in a sys
can produce spurious dimension estimates for low as we
for high dimensional~spatially extended! systems. While this
effect may not be too severe for low dimensional syste
since we may have enough data to resolve the intermit
structure, for high dimensional systems these effects co
pretend a dimensionality of the system, which cannot be
solved by going to smaller length scales. This becomes c
if we look at Fig. 7 where the breakdown is not as pr
nounced as in Fig. 8. The ‘‘breakdown’’ in the former figu
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could also be interpreted as a plateau, which would lead
dimension estimate of about 4.5. This means, one has t
very careful in interpreting the results of the correlation
mension estimate, especially in a spatially extended sys
where space-time intermittency seems to be a ubiquit
phenomenon.

FIG. 9. Shown are the data from Fig. 8 and the estimate
D2
out(e,m) (m51, . . .,10) only, for the same system.
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