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Correlation dimension of intermittent signals
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We investigate the breaking of proper self-similarity of attractors in the presence of intermittency. We show
that this can lead to dramatically too small values of the numerically estimated correlation dimBgsion
which we relate, in the case of type | intermittency, to universal scaling properties in the vicinity of the critical
value of the control parameter. For spatially extended systems we study the influences of space-time intermit-
tency on the correlation dimensiof$1063-651X97)01307-X

PACS numbes): 05.45+b

The estimation of invariant quantities like dimensions, en-show the graph of the third iterate of the logistic map
tropies, or Lyapunov exponents has become quite a ubiquf-f(x)=1—ax?] for a=1.7425 (left plot). For a=a.=7/4
tous task in the analysis of chaotic time series. It is imposthe map undergoes a bifurcation from chaotic behavior
sible to numerically perform the limits given in the a<a, to a stable period 3 orbéa>a.. Thus, for the param-
mathematical definition of these quantities, since the attraceter value ofa shown in the figure, the map is chaotic. But
tors formed by time series are usually represented by a finitene can see that close to the valuesxofvhere the fixed
number of points and experimental observables are additiorpoints arise fom=a. the map is already near thye=x line.
ally corrupted by noise. In the case of “well behaving” low That means that once the trajectoryfefof comes close to
dimensional systems this is not a severe problem at all. Then¢iese points, it stays there for a certain tifright plot in Fig.
one can estimate, e.g., the correlation dimension even o), and a time series df looks roughly periodic. It is known
relatively large length scales with good accuracy. By “well that the average lengifi) of the almost periodic segments
behaving” we mean that the structure of the attractor is morecales like
or less independent of the length scales we lookoatin
other words, the self-similarity is visible on large scales, al- (h~(a-a )12 1)
ready. But this may not always be the case. The properties ¢
might differ quite strongly with respect to the length scales.

A trivial example of this length scale dependency is a deterfor type | intermittency{2,3]. As we will see in the follow-
ministic system, which is corrupted by noise. In this case théng, this behavior has dramatic consequences for the corre-
true dimension is infinity, but on large scales one might sedation integral.

(if the noise is not too largethe dimension of the noise free ~ As another example for a low dimensional system, we
attractor. treat the Lorenz systefd]. It has a periodic solution for the

Another example is the one we want to investigate in thisparameter valueb=8/3, o= 10, andr~ 166 [2]. For these
paper in more detail. The system we are looking at is supparameters we will see a one dimensional, nonchaotic limit
posed to show intermittent behavior. That means, the timeycle. Increasing a bit will lead to intermittent behavidd ].
evolution of the system looks periodic for a certain time, butA delay plot of thex coordinate forr =166.07 is shown in
occasionally shows chaotic bursts. Fig. 2. Most of the points are close to the periodic orbit,

One possible mechanism for this behavithe so called whereas the remainder of the attractor is poorly sampled by
type | intermittency[1]) is illustrated in Fig. 1. There we the short chaotic bursts.
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FIG. 1. Third iterate of the logistic map with a paramedatiose to the bifurcation to the period 3 orli&ft pane) and the resulting time
series(right pane).
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FIG. 2. Delay plot of thex coordinate of the Lorenz system with FIG. 4. Shown are the dimension estimates of the logistic map
strong intermittency. The parameters were=8/3, o=10 for three values o (a=1.7499,1.749 99,1.749 999 from above to
r=166.07. ’ ' below) close toa.. The embedding dimension was seintie=5 for

all a.

Figure 3 shows the results for the correlation dimension )
estimate of these data. On large length scales the dimensi&#sing Eq.(3) one easily gets
of the system is close to 1. Only on much smaller length .
scales do we find the crossover to the correct dimension D,(e,m)=p’iD5(e,m)+p’ 5uD5"(€,m), )
(>2).
This behavior can be explained by studying the propertiegvith
of the correlation dimension. The correlation integral is de-

fined by[5] - -

g DI ONCIE A )

1 N p’- _|n(out) n
C m=—— _ )'(’ _)'(’ ’ 2 in(out) — R ,
2(6 ) N(N_l)CZl r;c (6 || c I"I||) ( ) 2 ; @(E_HXC_Xn”)
wherem is the embedding dimensioathe length scale, and o _ _ _ _
N the number of vector§-—(x- X1 X 1. Now which is the fraction of pairs found in the laminar phase and
i~ 1A =1 = = = N —m+ .

we can divide the first sum on the right-hand side into two!l€ Chaotic bursts, respectively.

parts: one containing the centers inside the laminar phase, ON !arge length ~scales the “partial” dimension

n H H ou H
the other one containing centers inside the chaotic burstD3 (€:M) is close to 1, whileD3"(e,m) is close to 2.(Of
This gives course, on length scales comparable to the attractor size, the

correlation integral is mainly dominated by folding effects
C,(e,m)= IOinCizn(é,mH poutcgut(eym), ©) andD,(e,m) may be much larger than)Zurthermore, most
of the points(see Fig. 2 are located in the laminar phase,
With Pincouyy=Nin(ouy/N being the fraction of centers lying in  which means thap’;, is large. This explains the behavior of
the laminar and the chaotic phase, respectively. From thithe correlation dimension on large length scateslf we
correlation integral one gets the correlation dimension by decreases the “fine structure” of the laminar phase is re-
solved. That means, it becomes visible that it is not a limit
dInCy(e,m) (4) cycle, but only close to one arﬂ‘z"(e,m) increases, so that
dine we eventually see the global dimension of the attractor.
What can we say about the behavior®f(e) for values
4 - - - - of e where the laminar parts still look like a periodic solu-
tion? Let(l) be the average length of the laminar parts and
(t) the average length of the chaotic bursts. Then, the prob-
ability of a point lying in the laminar phase is given by

_ D
pin_<|>+<t> . (6)

Dz(E,m):

Dy(e.m)

From Eq.(1) we know that(l) scales like 1Ja.—a. On the
other hand,(t) does not depend om.,—a (at least not
: ‘ - - strongly, since it is determined by the global properties of
10°% 00001 0001 001 0.1 1 the map, which do not changéstrongly under small
changes of. Thus, for small variations o, we can expect
FIG. 3. Results for the estimate of the correlation dimension for(t) being a constant. With this we can conclude that the large
the data shown in Fig. 2. The length of the time series w&s 10  scale dimension behaves like
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FIG. 5. Estimated large scale dimension as a functioa.efa. The left plot shows the scaling &f,. The right plot shows the behavior

of D,/f(a.,—a), wheref is f;=\a.—a andf,=a.—aW¥(a), respectively.
(1) N (t) out large scales as a function af—a. The plot shows that the
Do(e,m)= WDZ €,m)+ WDZ (e;m). (7)  dimensions scale pretty well like the expected square root.
The right plot showsD,(e,m)/f(a,—a), with f being
(For the dimension we have to ugé;, instead ofp;,,. But  fi=va.—a and f,=va.—a¥(a), respectively, which is
the scaling law is the same for both quantities, if the neighimore sensitive to using the correct scaling law, and we see
borhoods of the points in the laminar and the chaotic parts ofhat Eq.(8) describes the results correctly. The constant in
the phase space do not overlap too strongly. ¥ was fitted to be 7.

We want to check the scaling behavior Eg) on the Also for the length scales, where the crossover of the
logistic mapf(x)=1—ax?. There we find the intermittent correlation dimension takes place, a scaling law should hold.
behavior close ta.=7/4 [3], where the period 3 window We can define a characteristic length scale of the laminar
occurs. For the case of the logistic map we havePhases. The average “time” the laminar phases last is given

DI’(e,m)=0 andD%"(e,m)=1, and Eq(7) reduces to by (1) and the velocity with which the trajectory “travels”
through the laminar part is in first approximation propor-
D,(e,m)~+a.—a¥(a), (8)  tional toa—a.. This defines a length scale
where e.x(a—ay)(l)xya—ac. (9)
1 It is very difficult to get thise, directly from data of the
Y(a)= T+ =1+ const/a.—a dimension estimate. Instead, we show in Fig. 6 the values of
C

a length scale,, which is defined as the length scale, where
gives the corrections to the square-root behavior and ca e correlation dlmensu_)n Crosses a given threshold Fig.
easily be calculated from Eg7). we showe, as a function oh—a. for two different values

Figure 4 shows the estimate of the dimensions on Iargé)f u, namely,u=0.5 andu=0.7, and one can see that the

length scales for different values af The closera is to scaling Iayv(g) holds pretty well.
a,, the smaller is the minimum of the estimated dimension In spatially extended systems one often observes another

In Fig. 5 (left plot) we show the estimated dimension on kind of intermittency, wr_nch is called space-time intermit-
tency [6,7]. Space-time intermittency means that we have

intermittent behavior in time as well as in space. This leads

o to a very complex and inhomogeneous structure of the sys-
tem.
As for low dimensional systems we must expect that the
0.01 ¢ 3 estimates of the correlation dimension of this kind of inter-
mittent systems might show similar “misleading” results, as
o they do for low dimensional systems.
0.001 | As an example of a spatially extended system, we study a
' coupled map latticgCML). This is a system ofN maps
spatially arranged as a linear chdin the one dimensional
casg, which are usually coupled by a nearest neighbor
0.0001 : . . mechanism
107 10-6 10-5 0.0001 0.001

a.-a

° X =(1-20) f(x) + o[ F(x, )+ F(X_ )], (10)
FIG. 6. ¢, as a function ofa—a,. for two different values ot

[t=0.5 (upper curvi andt=0.7 (lower curvé]. Additionally the ~ wherei=1,... N is the spatial index of the maps,the

square roots are plotted. (discretg time, andf a chaotic map. Heré is the logistic
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] ) ) FIG. 8. Similar to Fig. 7, but for=0.16 andm=1, .. .,10.
FIG. 7. Dimension estimate of a system of 100 coupled Ulam

maps based on a scalar time series. The coupling constant was set th hich sh | iodici hi
o=1/3. The embedding dimensions range from 1 to m= 15. also a structure which shows no clear periodicity. This com-

plicated behavior also appears in the large system. Depend-
ing on the size of the laminar phases in the large system, one
can find any of the mentioned solutions. Thus one cannot

the more physical partial differential equations, the advan!®!ate the properties of the correlation dimension to a single
tage of this system is that it is discrete in space and time anperiodic solution. To study its behavior in more detail, ]et us
thus very easy to iterate. Additionally, the Jacobian of thisr€at another value af, namely,o=0.16. For this coupling
system is easy to calculate and one can estimate tH@® Preakdown is even more pronouncede Fig. 8 ,
Lyapunov exponents to whatever precisiom a numerical For this value ofo- there exists a unique periodic solution
sensg one wants. Using the Pesin identity and the Kaplan{11l, which has period 2 in time and period 4 in space with
Yorke formula one easily obtains the entropy and the dimenthe spatial structure: . xxyyxxyy. .., wherex andy are
sion of the system, so that we can check the results from the
dimension estimate based on the time series analysis directly 4(1—0)?
with the results obtained by the Lyapunov exponents. Of y(x)= m(li[9—m
course, the time series analysis is not able to yield the full
dimension of the system. The reason is that for a typical
system sizeN=100 and a coupling constant=1/3 (which  Linear stability analysis shows, that this solution is stable in
is sometimes called the democratic couplinge Kaplan- the intervaloe[0.14:0.19 for all N=4n with neN and
Yorke formula yields a dimension db~55. Even if we Periodic boundary conditions. Thus, the chaotic behavior we
assume that the system is multifractal, so that the correlatiofPserve in this case is only transient and represents a chaotic
dimension is smaller than the information dimension, it isrepeller.
impossible to reach such values using the time series analysis Independent oN, parts of the system are temporarily in
[8,9]. the laminar(periodig phase. Of course, these periodic sub-
Figure 7 shows a typical plot of the correlation dimensionsystems are disturbed by the rest of the systems and, there-
estimate based on a scalar time sefi$,_; _r for the fore, hgve f|ln|te Ilfg times only. This is one mechanism fqr
above mentioned parameters. For our treatments the intere§iPace-time intermittency and we can expect some behavior
ing part of the plot is the breakdown of the estimate forfor thg corr(_alanor_] mteg_ral similar to what we found for the
€<0.2. This breakdown shows a signature similar to the ondoW dimensional intermittent systems. _
observed in the dimension estimate for systems with strong_ 1he difference in the dimension estimate of a low dimen-
linear correlation§10]. We will see that the effects shown in Sional and of the above system is the following: For low
Fig. 7 are of completely different origin. dimensional systgms, we saw the Iamm_ar behavior on large
The behavior in our system is determined by a kind oflength scales, while for _th_e CML the laminar part appears on
space-time intermittency. If one observes the time evolutiofMall length scales. This is due to the frequency the periodic
of the system one sees that the spatial degrees of freedoR!tS appear. They are relatively seldom, which means that
behave most of the time irregularly. But occasionally, thisPeu® Pin, SO that the coarse grained invariant measure of the
irregularity is replaced by laminar windows occurring tem- System on large scales is dominated by the chaotic parts and
porarily in parts of the system. To study the structure ofthe correlation dimension is roughly identical B$"(e,m).
these laminar parts we reduced the system size. If the systefihe singularitie§and thusD3'(e,m)] only appear if we re-
size is small enough, the whole system eventually “relaxes”duce the length scale further and further. From Fig. 8 we see
to the laminar solution and one can investigate its propertiethat the higher the embedding dimension, the more abrupt is
in detail. For our special parametes€ 1/3) this is very the breakdown. The reason for this behavior is that due to the
difficult. Depending on the system size the laminar parts ardigh dimensionality of the attractor, all center points in the
periodic in time with either period 2 or period 4 or even chaotic parts lose their neighbors on large length scales, so
guasiperiodic. Also the spatial structure of ffygiasiy peri-  that finally the only pairs contributing to the correlation sum
odic solutions is ambiguous. We found period 7 in space, bustem from the laminar phase. This holds for arbitrarily high

map f(x)=1—ax? in the regime of fully developed chaos
(a=2). 0€[0,1/2 is the coupling constant. Compared to

172
) . (11
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embedding dimension, since the temporal length of the lami-
nar phasesl) is not bounded. Of course, this loss of neigh-
bors is faster the higher the embedding dimensiqatiseast
as long as the embedding dimension is smaller the attractor’s
dimension, which is the case hgre

To further illustrate that the breakdown is indeed caused
by the laminar parts we checked it directly in the following
way: When computing the correlation integral we excluded
all points as center points which lay in the laminar parts.
That is, we only computeB$“{(e,m). The result is shown in
Fig. 9. There one clearly sees that the breakdown does no
longer appear and that the dimension grows more or less o 001 001 o1 ]
linearly with In(e). e

We showed that the existence of laminar parts in a system
can produce spurious dimension estimates for low as well aBO
for high dimensiona(spatially extendedsystems. While this 2
effect may not be too severe for low dimensional systems,
since we may have enough data to resolve the intermitterdould also be interpreted as a plateau, which would lead to a
structure, for high dimensional systems these effects couldimension estimate of about 4.5. This means, one has to be
pretend a dimensionality of the system, which cannot be revery careful in interpreting the results of the correlation di-
solved by going to smaller length scales. This becomes cleanension estimate, especially in a spatially extended system,
if we look at Fig. 7 where the breakdown is not as pro-where space-time intermittency seems to be a ubiquitous
nounced as in Fig. 8. The “breakdown” in the former figure phenomenon.
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FIG. 9. Shown are the data from Fig. 8 and the estimate of
Ue,m) (m=1,...,10) only, for the same system.
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